Self-similarity in the eigenvalues of random matrices
Elizabeth Meckes, Case Western Reserve University

The eigenvalues of random unitary matrices have long been conjectured to have a self-similarity property: that n sequential eigenvalues of an $mn \times mn$ random unitary matrix are statistically indistinguishable from the eigenvalues of an $n \times n$ random unitary matrix. I will describe a first rigorous result on this phenomenon.